University of Mumbai Syllabus Structure (R-2007)

B.E. Biomedical Engineering

Semester-VII

Sr. No.	Subject	Scheme of Instructions Periods per Week (Each 60 min.)		Scheme of Evaluation					
		Theory	Practical/	Pa	per	TW	Practical	Oral	Total
			Tutorial	Hours	Marks		/Oral		Marks
1.	Medical Imaging- II	04	02	3	100	25		50	175
2.	Biomedical Instrumentation- III	04	02	3	100	25		25	150
3.	Principles of Image Processing	04	02	3	100	25	50		175
4.	Networking and Information System in Medicine	04	02	3	100	25		25	150
5.	Installation, Maintenance and Servicing	04				50		50	100
6.	Project Stage-I		04			25		25	50
	Total	20	12		400	175	50	175	800

B.E. (BIOMEDICAL ENGINEERING) <u>SEMESTER - VII</u>

University of Mumbai						
Class: B.E.	Branch: Biomedical	Semester: VII				
	Engineering					
Subject: <u>MEDICAL IMAGING- II</u>						
Periods per Week	Lecture	04				
(Each 60 min.)	Practical	02				
	Tutorial					
		Hours	Marks			
Evaluation System	Theory	03	100			
	Practical & Oral					
	Oral	02	50			
	Term Work		25			
	Total	05	175			

	Content	Tin
Module		(hr
	Computed Tomography.	
1.	Principle of Computed tomography	(
	Scanner configurations/generations, CT system: Scanning unit	(
	(gantry), detectors, data acquisition system, spiral CT, scanner	
	parameters, CT Number	
-	Reconstruction techniques, Radon Transform, Filtered Back	(
	projection, Fourier Reconstruction Technique, Iterative	
	reconstruction Technique, Image quality and artifacts, Clinical	
	applications of CT	
	Multi-detector computed tomography (MDCT), Flat panel	
_	detectors	
	CT-Angiography	
2.	Magnetic Resonance Imaging	
	Physics of MRI, Relaxation Parameters and Spin Echoes,	
	Magnetic Field Gradients, Slice selection and Frequency	
	Encoding, Pulse sequences	
	Hardware: Magnets, Gradient systems, RF coils,	(
	Fourier Reconstruction techniques, Image contrast, Resolution	
	and Factors affecting signal-to-noise	

	Safety Considerations/Biological Effects of MRI	02
3.	Magnetic Resonance Spectroscopy (MRS)	06 <
	Basic Principle of MRS and localization techniques, Chemical	
	Shift Imaging, Single-voxel and Multivoxel MRS, Water	
	Suppression techniques	
4.	Basics of Electrical Impedance Tomography	02
5.	Hybrid Imaging modalities and its clinical application	02

Theory Examination:

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Q.1 will be compulsory and based on the entire syllabus.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to the number of respective lecture hours as mentioned in the syllabus.

Oral Examination:

Oral will be based on entire subject for 25 marks and also on the basis of the Hospital/Industry visits for 25 marks separately.

Term work:

Term work will consist of at least Eight Assignments/ Laboratory Experiments based on the above syllabus and a written test. Test and Seminars be suitably graded by teachers and attached in the journal. The distribution of the term work shall be as follows,

Lab work (Assignments/ Laboratory Experiments & Seminar) :15marks Test (at least one)

:10 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Text Books:

- 1. Christensen's Physics of Diagnostic Radiology, Lipimcott William, (willkins Publication)
- 2. Medical Imaging Physics William R. Hendee (Wiley-Liss Publication)

References:

- 1. Biomedical Technology and Devices Handbook by James Moore George Zouridakis (CRC Press)
- 2. Biomedical Engineering Handbook by Bronzino (CRC Press)
- 3. Physics of Diagnostic Imaging –Dowsett

B.E. (BIOMEDICAL ENGINEERING) SEMESTER - VII

University of Mumbai					
Class: B.E.	Branch: Biomedical	Semester: VII			
	Engineering				
Subject: BIOMEDICAL INSTRUMENTATION -III					
Periods per Week	Lecture	04			
(Each 60 min.)	Practical	02			
	Tutorial				
		Hours	Marks		
Evaluation System	Theory	03	100		
	Practical & Oral				
	Oral	02	25		
	Term Work		25		
	Total	05	150		

	Content	Ti
Module		
	Physiotherapy, Electrotherapy and Radiation Therapy	
1.	Equipments: Basic principle, working and technical	
	specifications of Shortwave Diathermy, Ultrasonic therapy unit,	
	Infrared and UV lamps, Nerve and Muscle Stimulator, Radiation	
	and Physical therapy Units.	
2.	Surgical Instruments: Surgical Diathermy machine, electrodes	5
	used with surgical diathermy, safety aspects in electronic surgical	l
	units, surgical diathermy analyzers.	
3.	Cardiac Pacemakers: Modes of operation, leads and electrodes.	
	Power supply sources. External and Implantable Pacemaker,	
	Performance aspects of Implantable Pacemaker.	
4.	Cardiac Defibrillators: DC defibrillator, Modes of operation and	
	electrodes, Performance aspects of dc-defibrillator, defibrillator	
	analyzers. Implantable defibrillator and defibrillator analyzer.	
5.	Hemodialysis Machine: Basic principle of Dialysis. Different	
	types of dialyzer membrane, Portable type.	
6.	Laser Applications in Biomedical Engineering	
	Laser Classifications, Types of Lasers, Medical Applications,	

	Laser Delivery Systems.	
7.	Heart rate variability measurement and applications.	02

Theory Examination:

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Q.1 will be compulsory and based on the entire syllabus.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to the number of respective lecture hours as mentioned in the syllabus.

Oral Examination:

Oral examination will be based on the entire subject.

Term work:

Term work will consist of at least Six Laboratory Experiments based on the above syllabus and a written test. Test and Assignments/Seminars be suitably graded by teachers and attached in the journal. The distribution of the term work shall be as follows,

Laboratory work (Experiments and Journal)

:15 marks

Test (at least one)

:10 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Text Books:

- 1. Handbook of Biomedical Instrumentation: R S. Khandpur. (PH Pub)
- 2. Medical Instrumentation, Application and Design: J.G. Webster. (John Wiley)
- 3. Introduction to Biomedical Equipment Technology: Carr –Brown. (PH Pub)

Reference:

- 1. Encyclopedia of Medical Devices and Instrumentation: J G. Webster. Vol I,II,III,IV (PH Pub)
- 2. Various Instruments Manuals.

B.E. (BIOMEDICAL ENGINEERING) SEMESTER - VII

University of Mumbai						
Class: B.E.	Branch: Biomedical	Semester: VII				
	Engineering					
Subject: Principles of Image Processing						
Periods per Week	Lecture	04				
(Each 60 min.)	Practical	02				
	Tutorial					
		Hours	Marks			
Evaluation System	Theory	03	100			
	Practical and Oral	02 50				
	Oral					
	Term Work	25				
	Total	05 175				

	Content	Time
Module		(hrs)
mouure		
	Basics of Image processing: Image acquisition, Processing,	05
1	communication, display, Electromagnetic Spectrum, Visual	
1	perception, structure of the human eye, image formation in the eye,	
	uniform and Non-Uniform Sampling, Quantization, Image formats	
2	Image Enhancement: Spatial Domain-Point processing techniques,	14
	histogram processing, Neighbourhood processing, Frequency Domain	
	techniques- 2D-DFT, Properties of 2 D-DFT, Low pass, High pass,	
	Noise removal, Homomorphic filters, Basics of Colour image	
	processing	
3	Image Segmentation: Detection of discontinuities, point line, edge	08
	detection, Edge linking, Hough transform, Region Based	
	segmentation	
		~-
4	Image transforms : DFT, FFT, DCT, DST, Hadamard, Walsh, Haar,	07
	Slant, K-L Transforms, Basis Functions and basis images	

5	Image Compression: Fundamentals of Image compression models,	07
	Lossless Compression- RLE, Huffman, LZW, Arithmetic coding	
	techniques Lossy Compression- IGS coding, Transform coding,	
	JPEG, Predictive Coding.	
6	Representation and Description : Morphology-dilation, Erosion,	07
	open, close, Hit and miss, Boundary extraction, region filling,	
	skeletonization, Feature extraction, Moments	

List of Experiments (Software Matlab / C/ Labview/ Similar software)

- 1. Point Processing techniques (At least 4 experiments)
- 2. Histogram Processing (Histogram Stretching and Equalisation)
- 3. Frequency Domain processing (Plotting 2D-DFT, Low pass and High Pass-Butterworth and Gaussian Filters)
- 4. Segmentation-Gradient operators
- 5. Transforms- DCT

Theory Examination:

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Q.1 will be compulsory and based on the entire syllabus.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to the number of respective lecture hours as mentioned in the syllabus.

Practical & Oral Examination:

Practical examination will be based on one experiment performed from the list of experiments given in the syllabus & Oral examination will be based on the entire syllabus.

Term work:

The distribution of the term work shall be as follows,

Lab work (Assignments/ Laboratory Experiments & Seminar)	:15 marks
Test (at least one)	:10 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Text Books:

- 1. Digital Image Processing, Gonzalez and Woods- Pearson Education
- 2. Fundamentals of Digital Image Processing, A.K. Jain P.H.I.
- 3. Digital Image Processing and Analysis, Chanda Majumder- Printice Hall India.

Reference:

- 1. Digital Image Processing and Computer Vision, Sonka, Hlavac, Boyle- Cenage learning.
- 2. Digital Image Processing, William Pratt- John Wiley

B.E. (BIOMEDICAL ENGINEERING) SEMESTER - VII

University of Mumbai							
Class: B.E.	Branch: Biomedical	Semester: VI	[
	Engineering						
Subject: <u>NETWORKING</u>	Subject: NETWORKING AND INFORMATION SYSTEM IN MEDICINE						
Periods per Week	Lecture	04					
(Each 60 min.)	Practical	02					
	Tutorial						
		Hours	Marks				
Evaluation System	Theory	03	100				
	Practical & Oral						
	Oral	02	25				
	Term Work	D	25				
	Total	05	150				

Module	Contents	Time
1	Networking technology	6
	WAN/LAN, T1, ISDN, DSL, Internet (http, url, domains),	
	ISO model, Ethernet, TCP/IP, Packet switching, circuit	
	switching, Throughput, bandwidth, level of service parameters	
2	Basic Security Concepts	3
	System security in general, Authentication, Authorization,	
	Confidentiality, Integrity	
3	Radiology Imaging basics	4
	Principles of different modalities (CR, DR, XR, XA, RF,	
	US, MR, NM, CT), Image characteristics for each modality	
4	Workflow Steps in Radiology and Planning, Designing and	4
	Implementing film less Hospital	
5	Introduction to RIS and PACS and HIS/RIS/PACS integration	4
6	Reengineering workflow: Focus on personnel and process	3
	Interoperability and Workflow integration issues	
7	Reengineering workflow: Radiologist's Perspective	3
8	Image acquisition and compression	3
9	PACS Architecture Networking and Security	10
10	Server and operating system	2
11	Storage and Enterprise Archiving	2
12	Image Displays	2

13	Tele-radiology	2
15	Legal Issues and formal policies	2

Theory Examination:

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Q.1 will be compulsory and based on the entire syllabus.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper wightage of each module will be proportional to the number of respective lecture hours as mentioned in the syllabus.

Oral Examination:

Oral exam will be based on entire subject.

Term work:

Term work consists of minimum two assignments and a written test. The distribution of the term work shall be as follows,

Laboratory work (Assignments and Journal)

Test (at least one)

:15 marks :10 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Text Book:

- 1. PACS Guide to Digital Revolution by Keith J. Dreyer (Springer)
- 2. Governance of Picture Archiving and Communications Systems by Carrison K.S. Tong (Medical Information Science Reference)
- 3. PACS and Imaging Informatics by H.K. Huang, John Wiley
- 4. Data Communication and Networking by Behrouz A. Forouzan McGrow Hill

Reference Book:

- 1. Computer Networks by A.S. Tanenbaum, Pearson Education
- 2. Practical_Imaging_Informatics.pdf
- 3. PACS fundamentals- By Herman Oosterwijk
- 4. DICOM Standard (http://www.dclunie.com/dicom-status/status.html)

	SEMESTER - VII		
	University of Mumbai		
Class: B.E.	Branch: Biomedical	Semester: VII	
	Engineering		
Subject: Installation,	Maintenance and Servicing	•	
Periods per Week	Lecture/Demo	04	
(Each 60 min.)	Practical		
	Tutorial		
		Hours	Marks
Evaluation System	Theory		
	Practical & Oral		
	Oral	02	50
	Term Work		50
	Total	02	100

Module	Contents	Time
1	Importance of Biomedical engineering Department in the	4
	hospital	
	Role of Biomedical Engineer in the hospital	
2	Various jobs carried out by Biomedical engineer in the	3
	industry such as – Sales and Marketing, Servicing and	
	Maintenance, Research and development, Application	
	specialist	
3	Installation Techniques and / or methods:	4
	Pre-installation techniques	
	Precautions to be taken	
	 Assembly of instrument / system 	
	 Testing of instrument before final handover. 	
4	Installation of medical equipments in various	16
	departments such as	
	Cardiac Equipments	
	• O. T. and O.T. equipments	
	Radiology equipments	
	Pathology equipments	
	Life saving equipments	
	• I.C.U., I.C.C.U., N.I.C.U. etc.	
	Medical Gas	
5	Maintenance and Servicing	8

	Preventive Maintenance and Calibration checks		
	• Types of Maintenance contracts – CMC and AMC		
	• Overall maintenance, Servicing and safety precautions of		
	Medical and Non-medical equipments		
	Insurance of Medical Equipments		
6	Introduction to System operating protocol (SOP) for	2	
	ISO certification		
	NABH certification		

Oral Examination:

Oral exam will be based on entire subject and the expert should be called from Hospitals/Industries.

Term work:

Term work consists of assignments based on the syllabus and demonstration etc. The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Text books & Reference books

• Manuals of various equipments